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1.   Introduction

This programming spec gives the information necessary to program the nonvolatile memory of the CY8CMBR3xxx devices. It 
describes a communication protocol that an external programmer will access, explains the programming algorithm, and gives 
electrical specifications of the physical connection.

1.1 Programmer

A programmer is a hardware-software system that stores a binary program (hexadecimal file) in the silicon's program (flash) 
memory. The programmer is an essential component of the engineer's prototyping environment or an integral element of the 
manufacturing environment (mass programming). The high-level diagram of the development environment is illustrated in 
Figure 1-1.

Figure 1-1.  Programmer in Development Environment

PROGRAMMER
SILICON

( CY8CMBR3xxx )
I D E

(EZ-Click 2.0 )
HEX - File

Software HardwareMiddleware

I2C-bus

In the manufacturing environment, the IDE block is absent because its main purpose is to produce a hex file.

As shown in Figure 1-1, the programmer performs three functions:

 Parses the hex file; extracts necessary information

 Interfaces with the silicon as an I2C master

 Implements the programming algorithm by translating the hex data into I2C signals

The structure of the programmer depends on its exploiting requirements. It can be software or firmware centric:

Software centric: The programmer's hardware works as a bridge between the protocol (such as USB) and I2C. All I2C com-
mands are passed to the hardware through the protocol from an external device (software). The bridge is not involved in the 
parsing of the hex file and programming algorithm – the upper layer (software) performs this task. Examples of such program-
mers are the Cypress MiniProg3 and TrueTouchBridge.

Firmware centric: This is an independent hardware design in which all the functions of the programmer are contained in one 
device, including storage for the hex file. Its main purpose is to be a mass programmer in manufacturing.

This document does not include the specific implementation of the programmer. It focuses on data flow, algorithms, and phys-
ical interfacing.

It specifically covers the following topics, which correspond to the three functions of the programmer:

 Data to be programmed

 Interface with the chip

 Algorithm used to program the target device
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Introduction

1.2 Introduction to CY8CMBR3xxx

The CY8CMBR3xxx family is an application-specific integrated circuit (ASIC) device for CapSense end applications. This 
device does not require any coding; instead, it has configuration registers that are programmed through an I2C-Bus. 

The nonvolatile subsystem of the silicon consists of a flash memory system with a maximum of 128 bytes. The flash memory 
system stores the device configuration information.

The part can be programmed after it is installed in the system by way of the I2C interface (in-system programming). The char-
acteristics of the I2C slave interface are:

 Communication speed is up to 400 kHz.

 No bus stalling – no clock-stretching

 The I2C address is configurable through the I2C register map.

This document focuses on the specific programming operations without referencing the silicon architecture. Many important 
topics are detailed in the Appendices. Most of the other material appears in the CY8CMBR3xxx datasheet.

The Appendices in this document are:

 Appendix A. Intel Hex File Format

 Appendix B. I2C Protocol - Packets and Signals 

http://www.cypress.com/?rID=88196
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2.   Required Data

This chapter describes the information that the programmer 
must extract from the hex file to program the 
CY8CMBR3xxx silicon. 

2.1 Hex File Origin

Customers use the EZ-Click GUI to develop their projects. 
After the project development, the nonvolatile configuration 
of the silicon is saved in the hex file. Only one record in this 
file actually targets the flash memory:

 Device configuration registers

Other records are auxiliary and are used to keep the integ-
rity of the programming flow.

2.2 Nonvolatile Subsystem

The flash memory is organized into one bank of 128 bytes. 
The programming granularity is one bank at a time.

The bank represents the registers of the Device Configura-
tion state. During the silicon's start-up (after HW/SW reset), 
the re-programmed functionality is loaded into the corre-
sponding volatile memory (registers). 

Figure 2-1 shows the flash organization and how it maps to 
the I/O space of the silicon.

Figure 2-1.  Nonvolatile Subsystem

The flash memory is mapped directly to the I/O registers of 
the silicon; 128 bytes of flash configure 0x00-0x7F registers 
of the Device Configuration state. Programmer extracts all 
128 bytes from the hex file.

For more information about registers and operating states, 
refer to the CY8CMBR3xxx datasheet. 

2.3 Organization of the Hex File

The hexadecimal (hex) file is a medium to describe the non-
volatile configuration of the project. It is the data source for 
the programmer.

The hex file for the CY8CMBR3xxx family follows the Intel 
Hex File format. Because Intel's specification is generic, it 
defines only some types of records that can make up the 
hex file. The specification allows customizing the format for 
essentially any possible silicon architecture. The functional 
meaning of the records is defined by the silicon vendor and 
typically varies for different chip families. See Appendix A: 
Intel Hex File Format on page 29 for details of the Intel Hex 
File Format.

The CY8CMBR3xxx family defines three types of data sec-
tions in the hex file: configuration flash, checksum, and 
metadata. See Figure 2-2 to determine the allocation of 
these sections in the address space of the Intel Hex File.

The address space of the hex file does not map to the phys-
ical addresses of the I/O registers of the silicon. Program-
mer uses hex addresses (see Figure 2-2) to read sections 
from the hex file into its local buffer. Later, this data is pro-
grammed (translated) into the corresponding addresses of 
the silicon.

Device Configuration

Registers
Stored in

Flash

1 byte

0x00

0x01

0x7F

0x7E

0x02
FSS_EN_MSB

CONFIG_CRC_MSB

CONFIG_CRC_LSB

...

SENSOR_EN_LSB

SENSOR_EN_MSB

FSS_EN_LSB
0x03

http://www.cypress.com/?rID=88196
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Required Data

Figure 2-2.  Organization of Hex File for the CY8CMBR3xxx 
Family

0x0000 0000 - Configuration Data (128 bytes), which must 
be programmed into the flash. These bytes configure the 
CY8CMBR3xxx device during boot.

0x9030 0000 - Checksum (2 bytes) of all the bytes in the 
Configuration Flash (128 bytes). The checksum is the arith-
metical sum of every byte in the user's flash. The 2-byte 
result is saved in this section in the Big-Endian format (MSB 
byte is first). This record must be used by the programmer to 
check the integrity of the hex file. Integrity means that the 
"Checksum" and "Configuration Flash" sections must corre-
late in this file.

0x9050 0000 - Meta Data (7 bytes). This section contains 
data, which is not programmed into flash. These are param-
eters for the programmer used during programming. The 
meaning of the fields in this section are listed in Table 2-1.

Table 2-1.  Meta Data in Hex File

Offset Data Type Length in Bytes

0x00 Hex file version 2 (big-endian)

0x02 I2C write address 1

0x04 Device ID (High) 1

0x05 Device ID (Low) 1

0x06 Device ID (Family) 1

 Hex file version: This 2-byte field in Cypress's hex-file 
defines its version (or type). The version for the 
CY8CMBR3xxx family is "0x0101". The programmer 
should use this field to check if the provided file corre-
sponds to the target device, or to select the appropriate 
parsing algorithm if it supports some families.

 I2C Write Address: This I2C address must be used dur-
ing the programming step. Note that after the device is 
programmed by this file, its I2C address can be changed 
(the new address is effective only after a reset or power 
cycle). Therefore, during the second and next program-
ming cycles, the programmer must use the I2C Verify 
Address. This field makes sense for the first program-
ming cycle.

 I2C Verify Address: Use this I2C address during the ver-
ification step. Note that after the first programming cycle, 
the I2C Write and I2C Verify addresses will be the same. 
The correct use of the I2C Write and I2C Verify 
addresses will be covered later in this document.

 Device ID: This three-byte value defines the part number 
for which this hex file is generated. These three bytes 
reflect the content of FAMILY_ID and DEVICE_ID[0-1] 
registers in the memory map. For example, for 
CY8CMBR3002 the Device ID is "0x9A (family_id), 0x0A 
(silicon_id_high), 0x00 (silicon_id_low)". The program-
mer uses this field to check whether the hex file corre-
sponds to the target chip. See Table 2-2 to understand 
the correspondence between the ID in hex and the 
memory map.

Table 2-2.  Device ID in Hex and Memory Map

I2C Register
Device ID 

(in hex)
Description

0x91 Meta Data [4] High ID 

0x90 Meta Data [5] Low ID

0x8F Meta Data [6] Family ID

0x0000 0000 128 bytes

0x9030 0000 2 bytes

0x9050 0000 7 bytes

Configuration 
Flash

Checksum

Metadata

N Bytes- unused space - populated space
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3.   Communication Interface

This chapter explains the low-level details of the communi-
cation interface. 

3.1 The Protocol Stack

Figure 3-1 illustrates the stack of protocols involved in the 
programming process. The programmer must implement 
both hardware and software components.

Figure 3-1.  Programmer’s Protocol Stack

Programming Algorithm
(Step 1 … Step N)

I2C – Interface
(Hardware Access Commands)

Physical Layer
(Signals, interfacing with chip)

I2C Read / Write

Logical I2C signal

Signals on the Line

The Programming Algorithm protocol—the topmost proto-
col—implements the whole programming flow in terms of 
atomic I2C commands. It is the most solid and fundamental 
part of this specification. For more information on this algo-
rithm, see Chapter 4: Programming Algorithm.

The I2C Interface and Physical Layer are the lower-layer 
protocols. Note that the physical layer is the complete hard-
ware specification of the signals and interfacing pins, and 
includes drive modes, voltage levels, resistance, and other 
components. The upper protocols are logical and algorith-
mic levels.

The purpose of the I2C interface layer is to be a bridge 
between pure software and hardware implementations. The 
“Programming Algorithms” protocol is implemented com-
pletely in the software; its smallest building block is the I2C
command. The whole programming algorithm is the mean-
ingful flow of these blocks. The I2C interface helps to isolate 
the programming algorithm from hardware specifics, which 
makes the algorithm reusable. The I2C interface must trans-
form the software representation of these commands into 
line signals (digital form).

3.2 I2C Interface

Inter-Integrated Circuit (I2C) is the industry-standard com-
munication interface developed by Phillips Semiconductors 
(now NXP Semiconductors). It is a synchronous, serial, 8-bit 
oriented, bidirectional 2-wire bus that implements a master/
slave relationship with 128 slaves on the bus. The I2C stan-
dard defines the following working modes: Standard (up to 
100  kHz), Fast (up to 400 kHz), Fast-mode + (up to 1 MHz), 
or High Speed (up to 3.4 MHz). The complete bus specifica-
tion can be found on the official NXP website. Designers of 
I2C-compatible chips must use the I2C-Bus specification 
and user manual (UM10204) as a reference to ensure that 
their devices meet all specific limits.    

Cypress's family of CY8CMBR3xxx devices is I2C-compati-
ble and these devices operate in the slave mode. The mas-
ter (host) uses an I2C bus to program flash or configure 
devices during runtime, read CapSense data, and so on.

The third-party programmer of the CY8CMBR3xxx device 
must implement the I2C master according to the standard 
specification. The developer of Programmer will probably 
use any available solution of the master, which passed the 
test for compliance with the I2C specification. Such ICs are 
produced by more than 50 companies around the globe. 
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Communication Interface

Note that the programmer may occasionally need to work in 
a multi-master environment. Consider that possibility when 
selecting the master's solution. In most cases, programming 
runs on single-master buses.

The CY8CMBR3xxx I2C interface has the following fea-
tures:

 7-bit addressing mode (up to 128 slaves).

 Bit-rate up to 400 kHz (Standard mode).

 No bus stalling – no clock stretching.

 I2C buffer – 252 bytes (the first 128 bytes are used for 
device configuration).

The developer of programmer must ensure that the selected 
or designed solution of the I2C master supports all these 
features, which are a subset of the I2C specification.

The I2C-Bus defines two digital pins to communicate with 
the master (programmer). They are sufficient for bidirec-
tional, semi-duplex data exchange (byte granularity). These 
two bidirectional wires are:

 Serial Clock (SCL): This line is used to synchronize the 
slave with the master.

 Serial Data (SDA): This line is used to send data 
between the data and slave.

Figure 3-2 shows an example of an I2C bus with slaves. 

Note  During programming of the CY8CMBR3xxx device, 
the I2C bus executes only the transport function (sends 
bytes between the master and slave). A complete set of 
lines is required from the programmer to communicate with 
the CY8CMBR3xxx device, as specified in Physical Layer.

Figure 3-2.  I2C Bus Connection Schematic

The programming flow consists of multiple Read and Write 
I2C transactions. These transactions are atomic transac-
tions from the standpoint of this specification. They can be 
of different length in bytes, but both are embraced in the 
bus's START and STOP signals. Repeated START is not 
used. 

See Appendix B: I2C Protocol - Packets and Signals on 
page 31 to understand the structure of the Read/Write trans-
actions and their waveforms on the bus. 

3.3 Physical Layer

This section describes the hardware connections between 
the programmer and the target device for programming. It 
shows the connection schematic and gives information on 
electrical specifications. 

The external interface connection between the host pro-
grammer and the target CY8CMBR3xxx device is shown in 
Figure 3-3 on page 11.

This figure also depicts all the power supply connections 
required in the typical working conditions of chip.

 

I2C 
Master

SCL

SDA

I2C 
Slave 1

SCLSDA

I2C 
Slave 2

SCLSDA

I2C 
Slave 3

SCLSDA

VDD

R R
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Communication Interface

Figure 3-3.  Connection Schematic of Programmer

Host 
Programmer

CY8CMBR3xxx

VDD VDD

SCL

XRES

SDL

I2C_SCL

XRES

I2C_SDA

VDD

GND

VSS

0.1 uF

VSS

RP RP

1.5 - 6 K

VDD

Vcc

Host Board Slave Board

VDD_IO

Note 1: The VDD_IO supply is pin available only the selected packages. For the packages that have a 
VDD_IO pin, the VDD and VDD_IO pins should be connected together (shorted) on the board.

Note 2: Acceptable range for VDD is 1.8 V ±5% and 2 V to 5.5 V.

Note 3: If the device is powered in the 1.8 V ±5% range, the VDD and VCC pins must be connected  
together (shorted) on the board. If the device package has a VDD_IO pin, then the VDD, VDD_IO, and VCC 
must be connected together (shorted).

Note 4: All other pins which are not shown in the circuit above should not be connected to any 
electrical node and must be left floating.
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Communication Interface

Only five pins are required to communicate with the chip. 
Note that the SCL and SDA pins are only required by the 
I2C protocol. 

The optional HW Reset (XRES) pin may be used to reset 
the slaves. This pin is used if the device is stuck or to clear 
the I2C bus (when SCL is stuck LOW, which is unlikely to 
occur). It is used to reset the part as a first step in a pro-
gramming flow. 

You can program a chip in the Reset, No-Reset, or Power 
Cycle mode. The mode defines only the first step—how to 
acquire the part—in the programming flow. The other steps 
are identical (I2C traffic).

 Reset mode – To start programming, the host toggles 
the XRES line, and then sends the I2C commands. In 
this case, the power on the target board can be supplied 
by the host or by an external power adapter (the VDD 
line can be optional).

 No-Reset mode – In this mode, the host must be sure 
that power is supplied to the target board via an external 
adaptor or from the host. Then, it can generate I2C traf-
fic immediately. The XRES line is not used and the VDD 
connection can also be optional if the target is powered 
by an external source. This method has a drawback – 
the chip is not reset before programming. This method 
will fail if the I2C bus or device is stuck.

 Power Cycle mode – To start programming, the host 
powers on the target and then starts sending the I2C 
commands. The XRES line is not used. 

It is recommended that the programmer uses all five pins 
and supports at least the Power Cycle mode of program-
ming. The Reset mode support is optional.

Most of the packages of the CY8CMBR3xxx device do not 
have an XRES pin. For them, the programmer will use the 
No-Reset or Power Cycle modes.
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Communication Interface

Table 3-1.  Programming Mode

Table 3-2.  CY8CMBR3xxx Pin Names and Requirements

Mode Necessary Pins
Unused

Pins
Use cases 

Reset

VDD (optional)

GND

XRES

SCL

 SDA

VDD

(if self-pow-
ered)

1. Board can be self-powered (device VDD is not connected to the programmer).

2. This mode is used when the board consumes too much current, which the pro-
grammer cannot supply (VDD line is not connected).

3. Five-pin case – when the host supplies power and toggles XRES (this is the 
most popular programming method).

4. If there are other devices on the I2C bus, it is recommended to connect the 
host’s XRES to every chip. It will ensure that the host can reset every slave that 
may hang up the bus.

No-Reset

VDD (optional)

GND

SCL

 SDA

VDD

(if self-pow-
ered and no 
XRES)

1. The board can be self-powered (device VDD is not connected to the program-
mer).

2. This mode is used when the board consumes too much current, which the pro-
grammer or the I2C master cannot supply (the VDD line is not connected).

3. This mode is used when the I2C master (host) or slave (target) does not have an 
XRES pin.

Power Cycle

VDD

GND

SCL

SDA

XRES

1. This mode is used when the I2C master (host) or slave (target) does not have an 
XRES pin on the part’s package. The only way to reset a part is the Power Cycle 
mode when there is no XRES pin.

2. The Power Cycle mode is relevant to most of the CY8CMBR3xxx packages 
because all of them, except one, do not have an XRES pin. It is the recommended 
mode.

3. Some third-party I2C masters can use this mode if they do not implement the 
XRES line but can supply power (on/off) to reset a part.

CY8CMBR3xxx

Pin Name
Function External Programmer – Drive Modes

VDD
Power supply input

(1.8 – 5.5 V)
Positive voltage – powered by external power supply or by programmer.

VSS Power supply return Low resistance ground connection. Connect to circuit ground.

XRES
Active low external reset input 
(with internal pull up).

Output – drive TTL levels (Drive mode – Strong)

SCL
I2C Clock line

(up to 100 kHz)

Output – drive TTL levels (Drive mode – Open Drain Low)

Input – read TTL levels in High-Z mode.

In general, SCL is bidirectional to watch for clock-stretching but CY8CMBR3xxx 
devices do not support stretching. Therefore, this line is used in the unidirectional 
mode.

The external pull-up resistor (RP) must be calculated.

SDL
I2C Data line 

- bidirectional

Output – drive TTL levels (Drive mode – Open Drain Low)

Input – read TTL levels in High-Z mode.

The external pull-up resistor (RP) must be calculated.

VCC Power Output Filter The external 0.1-uF capacitor must be connected between this pin and ground.

CMOD External Modulator Capacitor The external 2.2-nF capacitor must be connected between this pin and ground.
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Figure 3-3 on page 11 shows that the I2C bus requires 
external pull-up resistors (RP). In choosing these resistors, 
consider supply voltage, clock speed, and bus capacitance. 
The typical value is in the range of 1.5 to 6 K for supply 
voltages in the range of 1.8 to 5.0 V. More information about 
calculating the RP value can be found in the I2C Bus Speci-
fication (UM10204, section 7.1 - Pull-up resistor sizing). 

The I2C timing specifications and the silicon's electrical 
specifications are documented in the CY8CMBR3xxx data-
sheet.

3.4 Hardware Access 
Commands

This section focuses on the low-level APIs that must be sup-
ported by the programmer of the CY8CMBR3xxx devices. 

The APIs must be implemented by the I2C Interface layer 
shown in Table 3-3. They make up the software fundamental 
for the high-level programming algorithm. This low-level API 
interface can be considered the hardware abstraction layer, 
because it is hardware-independent (but its implementation 
is important for concrete hardware). Theoretically, the upper 
layer (Programming Algorithm in Table 3-3) can be reused 
for a different programmer hardware.

Table 3-3 lists the hardware access commands used by the 
software layer.

Table 3-3.  Hardware Access Commands

Command Parameters Description

I2C_WriteTransfer
IN address, IN size, IN data[],

OUT ackAddr, OUT ackData[]

Executes on the I2C bus one-write transaction embraced in the START 
and STOP signals. It writes “size” bytes from the array “data[]” to the 
slave device specified by the 7-bit “address”. The output parameters are 
the acknowledgement bits of the address and data bytes. ACK is logical 
“0” and NACK is logical “1”.

I2C_ReadTransfer
IN address, IN size, OUT ackAddr, OUT 
data[]

Executes on the I2C bus one-read transaction embraced in the START 
and STOP signals. It reads “size” bytes into the array “data[]” from the 
slave device specified by the 7-bit “address”. The output parameters are 
acknowledgement bits of the address byte and array of read data. Note 
that the memory for the “data[]” array must be already reserved by the 
API’s caller.

ToggleReset      –

Generates the active LOW reset signal for the target device. Program-
mer must have a dedicated pin connected to the XRES pin of the target 
device. See Table 3-2 on page 13. The recommended duration of the 
active signal is > 5 µs (see the CY8CMBR3xxx datasheet for details).

Power IN state
If the programmer powers the target device, it must have this function to 
supply power to the device.

Delay IN delay_ms
Programmer must be able to delay the programming flow for the neces-
sary time (50–1000 ms).

For more information on the structure and waveform of the 
Read/Write I2C transactions, see Appendix B: I2C Protocol - 
Packets and Signals on page 31.

3.5 Pseudocode

The programming flow consists of numerous I2C_Read and 
I2C_Write transfer commands, with multiple status acknowl-
edgement bits that must be checked every time. It is conve-
nient to wrap them up in new procedures. This document 
uses easy-to-read pseudocode to show the programming 
algorithm. 

The following two commands are used for the programming 
script:

 I2C_Write (address, size, data[])

 I2C_Read (address, size, OUT data[])

where the address, size, and data[] parameters have the 
same meaning as in the corresponding I2C_Read and 
I2C_Write transfer commands (see Table 3-3). The upper-
layer APIs automatically check all ACKs of current transac-
tion and return a single status via its name. These APIs help 
to keep the programming script concise. The following are 
some usage examples:

BYTE[3] data = {0x07, 0x25, 0xAF}

I2C_Write( 0x04, 3, data)

BYTE[10] data; //reserve 10 bytes

I2C_Read ( 0x04, 10, OUT data)

http://www.cypress.com/?rID=88196
http://www.cypress.com/?rID=88196
http://www.cypress.com/?rID=88196
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The defined Write and Read pseudo-commands must be successful if they return the ACK status for every written byte. For 
Read transactions, this is the ACK of only the address byte, but for the Write transaction address and all data bytes, it must 
be ACKed. If at least one byte is NACKed, the transaction is treated as failed. In this case, depending on the programming 
context, the process must be terminated or the transaction tried again.

The following is the implementation of Write/Read pseudo-commands based on hardware access commands (Table 3-3):
bool I2C_Write (address, size, data[]) 

{

BYTE ackAddr;

BYTE[size] ackData; //reserve space for status bytes of data 

//1 bit is sufficient for 1 ACK 

//This implementation uses byte to store 1 ACK bit

I2C_WriteTransfer (address, size, data[], OUT ackAddr, out ackData);

// Check ACKs of address and data bytes (ACK = 0x00, NACK = 0x01)

If (ackAddr != 0x00) Return FALSE; //NACK

For (BYTE i = 0; i < size; i++) 

{

If (ackData[i] != 0x00) Return FALSE; //NACK

}

Return TRUE; //all ACKed

}

bool I2C_Read (address, size, OUT data)

{

BYTE ackAddr; //reserve 1 bit (byte in fact) for ACK bit of address byte

 //assuming that “size” bytes for “data” is allocated by caller

I2C_ReadTransfer (address, size, OUT ackAddr, OUT data);

If (ackAddr != 0x00) Return FALSE; //NACK

Return TRUE; //ACK

}

The programming code in Chapter 4: Programming Algorithm, will be based mostly on the I2C_Write/Read pseudo-com-
mands and some commands from Table 3-3.
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4.   Programming Algorithm

This chapter describes the programming flow of the 
CY8CMBR3xxx device. It starts with a high-level description 
of the algorithm and then describes every step using the 
pseudocode. All programming script is made up of hardware 
access commands (see “Hardware Access Commands” on 
page 14).

 Atomic I2C_Read/Write() APIs from “Pseudocode” on 
page 14. They are middle-level APIs.

 High-Level subroutines, which wrap up atomic 
I2C_Read/Write() APIs. They make up ~ 90% of the 
whole script. See Subroutines used in Programming 
Flow.

It is possible to write the entire script using the hardware 
access commands. In that case, the script is enormous and 
will have a lot of duplication. This approach causes signifi-
cant inconvenience in studying the script and its support.

The purpose of high-level APIs (pseudocode) is to make the 
script easy to read and eventually mappable on the actual 
programming language.

4.1 High-Level Programming 
Flow

Figure 4-1 shows the sequence of steps that must be exe-
cuted to program the CY8CMBR3xxx device. These steps 
are described in the following sections. All of the steps in 
this programming flow must be completed for a successful 
programming operation. The programmer should stop the 
programming flow if any step fails. In addition, in pseudo-
code, it is assumed that the programmer checks the status 
of each I2C transaction (I2C_Write, I2C_Read, WritePacket, 
ReadPacket). This extra code is not shown in the program-
ming script. 

If any of these transactions fails, you must abort program-
ming. To abort, execute Step 5 – Release Chip, which exe-
cutes the opposite actions of Step1. It ensures that the 
programmer and the target are left in the known state after 
programming is stopped (upon PASS or FAIL).

The flash programming in the CY8CMBR3xxx family is 
implemented by accessing its registers through the I2C bus. 

The external programmer puts parameters into the volatile 
memory and requests a system call, which, in turn, performs 
flash updates.

Figure 4-1.  High-Level Programming Flow of CY8CMBR3xxx Device

Step 1. Acquire Chip

Step 3. Program Flash

Step 4. Verify Flash

Step 5. Release Chip

START

FINISH

Step 2. Check Device ID

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

PASS / FAIL

4.2 Subroutines used in 
Programming Flow

The programming flow includes some operations that are 
intensively used in all the steps. Eventually, the program-
ming code will look compact and easy-to-read and under-
stand. Besides that, most registers and frequently-used 
constants are named and referred to from the pseudocode.
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Table 4-1.  Constants Used in Programming Script

Table 4-2.  Subroutines used in Programming Flow

Constant Name Value Description

Device’s Registers

DEVICE_ID_LOW

DEVICE_ID_HIGH

FAMILY_ID

0x90

0x91

0x8F

Device Identity Register – this is a 3-byte read only register that 
returns the unique device ID through which the device can be identi-
fied. For example, the ID of the CY8CMBR3116 device is 0x0A05 and 
Family ID = 0x9A. 

I2C_ADDR 0x51
I2C Configuration Register – this is used to set (or read) the I2C slave 
address. The Slave range is 0x00-0x7F. This register is available in 
the Device Configuration state.

DATA_OFFSET 0x00
This is the address of the first register in the Device Configuration 
state, starting from which the data will be programmed in flash. 

CTRL_CMD 0x86 Command Register – Opcode for the command to execute.

CONFIG_CRC 0x7E

Configuration data CRC. Its length is 2 bytes.

Checksum matched bit is set if the checksum sent by the host 
matches the one actually calculated by the device. It is the checksum 
of the data to be programmed into flash. This bit is available in the 
Device Configuration mode only.

CTRL_CMD_ERR 0x89

Status code returned from the most recently executed command. The 
status can be in the range 0 to 255.

The status codes related to programming are:

0x00 – NO_ERROR;

0xFD – WRITE_FAIL (Write to flash failed);

0xFE – CRC_ERROR (Stored configuration CRC checksum did not 
match the calculated configuration CRC checksum).

 Registers’ Values

SAVE_CHECK_CRC 0x02

Possible value of the CTRL_CMD register. This command stores the 
data from the register in the RAM memory to the nonvolatile memory 
(NVM). During saving, the device will compare the CRC of the regis-
ters (126 bytes) with the CRC value in the last two bytes in the config 
section. If the CRC check fails, the data is not saved to the nonvolatile 
memory and the error status is updated.

SW_RESET 0xFF
Possible value of the CTRL_CMD register. This command executes a 
software reset.

Subroutine Description

bool WritePacket( address, 

                  size,

                  data[] )

This subroutine wraps I2C_Write() API from the “Pseudocode” on page 14. It keeps sending 
the same I2C write request until it is ACKed. If the CY8CMBR3xxx does not respond 
(NACKs), then the master has to poll it for some time.

bool ReadPacket( address, 

                 size,

              OUT data[])

This subroutine wraps the I2C_Read()API from the “Pseudocode” on page 14. It keeps send-
ing the same I2C read request until it is ACKed. If the CY8CMBR3xxx device is unresponsive 
on the I2C bus, the master has to try sometimes.
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The implementation of these subroutines follows. It is based 
on the pseudocode and registers defined in “Pseudocode” 

on page 14 and “Hardware Access Commands” on page 14. 
It uses the constants defined in this chapter.

The pseudocode is similar to a C-style notation.
// “WritePacket” Subroutine
bool WritePacket ( address, size, data[] )
{

bool ack;
for (i = 0; i < 20; i++)
{

ack = I2C_Write(address, size, data[]);
if (ack) // ACK
{
return TRUE ;
}

}
return FALSE; // NACK

}

// “ReadPacket” Subroutine
bool ReadPacket (address, size, OUT data[])
{

bool ack;
for (i = 0; i < 20; i++)
{

ack = I2C_Read(address, size, OUT data[]);
if (ack) // ACK
{
return TRUE ;
}

}
return FALSE; // NACK

}
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4.3 Step 1 – Acquire Chip

The first step in the programming flow is to ensure that the device is detected on the bus and is ready for programming. The 
acquisition algorithm is tricky for the CY8CMBR3xxx device. Besides initialization, determine the I2C address from the hex file 
you need to use: Program or Verify address (see “Organization of the Hex File” on page 7). This address is programmable in 
the CY8CMBR3xxx devices and it can be changed after a successful programming cycle. Note that the Program and Verify 
addresses are configurable in the EZ-Click GUI. If you need to change them, update your project and regenerate the hex file.
The following programming scenarios are possible: 

 The target is only from the factory and will be programmed the first time (and probably the last time) for the end design. It 
is mass production programming. In this case, the hex file will have the correct "I2C Program Address" that matches the 
actual address of the target chip. Cypress will ship these devices with the default factory configuration where the I2C 
address is 0x37.

 The target is programmed the second time, and subsequently, using hex files with the same Program and Verify 
addresses. This is the prototyping scenario or flash upgrade in the field. In this case, the device will boot up with the Verify 
address (programmed last time). Therefore, it is necessary to use this address for both the Program and Verify opera-
tions.

In general, the hex file must reflect the correct Program and Verify addresses of the target chip. The end design must avoid 
the following ambiguous scenarios on the bus:

 Two slaves with the same addresses as the corresponding fields in the hex file (I2C Program and Verify addresses). In 
this case, the target device may not be detected correctly (especially if both are from the CY8CMBR3xxx family).

 After the programming step, a new target's address has a conflict with the other device on the bus. Theoretically, this case 
should fail during verification step.

The Acquire step programmer determines the correct I2C address to be used during the next two steps: "Check Device ID" 
and "Program Flash". In the "Verify Flash" step, the Verify address from the hex file is always used.
Figure 4-2 shows the acquire algorithm. It is assumed that the programmer starts acquisition from one of the three modes 
described in the section Physical Layer – Reset, No-Reset or Power Cycle.

http://www.cypress.com/?rID=90803
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Figure 4-2.  Flow Chart of Acquisition Sequence
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Pseudocode – Step 1. Acquire Chip

//-------------------------------------------------------------------------------
// Note, that this step requires following data from hex-file: 
// - I2C Program Address (0x90500002 – offset in hex)
// - I2C Verify Address  (0x90500003 – offset in hex)
// Programmer should implement below APIs:
// 1) HEX_GetProgramAddr() and  2) HEX_GetVerifyAddr()

// Reset Target depending on acquire mode – Reset or Power Cycle
If (AcquireMode == “Reset”) ToggleReset(); // Toggle XRES pin, target must be powered.
Else If (AcquireMode == “Power Cycle”) Power(ON);// Supply power to target.

// Loop to find out correct I2C device from hex-file
Program_Address = HEX_GetProgramAddr();
Verify_Address  = HEX_GetVerifyAddr();

Do
{

ack = ReadPacket (Program_Address, 1, out data);
If (ack == ACK) 
{

Detected_Address = Program_Address; // to be used in Steps 2,3
break;

}

ack = ReadPacket (Verify_Address, 1, out data);
If (ack == ACK) 
{

Detected_Address = Verify_Address; // to be used in Steps 2,3
break;

}

}
While (time_elapsed < 3 sec); 

If (time_elapsed >= 3 sec) Return FAIL;

//Check if device belongs to CY8CMBR3xxx family
//Read I2C_ADDR register and compare it with Detected_Device. They must match.
data[0] = I2C_ADDR;
WritePacket(Detected_Address, 1, data);
ReadPacket(Detected_Address, 1, out data);

If (data[0] != Detected_Address) Return FAIL;

Return PASS;
//------------------------------------------------------------------------------
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4.4 Step 2 – Check Silicon ID

This step is required to verify that the acquired device corre-
sponds to the hex file. It reads the ID from the hex file and 
compares it to the ID obtained from the target.

Figure 4-3.  Flow Chart of Check Silicon ID

Pseudocode – Step 2. Check Silicon ID

//-------------------------------------------------------------------------------
// Read “Device ID” from Hex-file - 3 byte from address 0x9050 0004.
// HEX_ReadDeviceID() must be implemented.
// “Detected_Address” is taken from Step 1.
HexID = HEX_ReadDeviceID();

//Checking Device ID register – Low and High bytes
data[0] = DEVICE_ID_LOW;
WritePacket ( Detected_Address, 1, data);
ReadPacket(Detected_Address, 2, out data);

IF ((HexID[0] != data[1]) || (HexID[1] != data[0])) 
Return FAIL;

//Checking Family ID register
data[0] = FAMILY_ID;
WritePacket ( Detected_Address, 1, data);
ReadPacket(Detected_Address, 1, out data);

IF (HexID[2] != data[0])
Return FAIL;

Return PASS;
//------------------------------------------------------------------------------
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4.5 Step 3 – Program Flash

Programming of the flash memory of the CY8CMBR3xxx 
device is straightforward. Load the configuration data (128 
bytes) into the volatile memory and commit program. This 
request programs whole flash and generates a software 
reset to reload the new configuration. 

The source data is extracted from the hex file starting from 
address 0x00000000 (see Figure 4.4). Note that the flash 
size of the acquired silicon must be equal to the size of the 
configuration data in the hex file. This was ensured in Step 2 
– Check Silicon ID by comparing the Device IDs of the hex 
and the target. The following figure illustrates this program-
ming algorithm.

Figure 4-4.  Algorithm of "Program Flash" Step
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Pseudocode – Step 3. Program Flash

//-------------------------------------------------------------------------------
// Configuration data must be extracted from hex-file (address 0x0000 0000). For that:
// HEX_ReadData(offset, length) API must be implemented.
// “Detected_Address” is taken from Step 1.

//1. Extract 128 configuration bytes from the hex file            
byte[] HexData = Hex_Readdata(0,128);

//2. Prepare I2C buffer with configuration data            
byte[] data = new byte[129];
data[0] = DATA_OFFSET;
for (int i = 0; i < 128; i++)

data[i+1] = HexData[i]);

//3. Write configuration into volatile memory            
WritePacket(Detected_Address, 129, HexData);

//4. Save Device Configuration (128 byte)
data[0] = CTRL_CMD;
data[1] = SAVE_CHECK_CRC;
WritePacket(Detected_Address, 2, data);

//5. Read register that contains status of last executed command
data[0] = CTRL_CMD_ERR;
WritePacket(Detected_Address, 1, data);
Delay(300); //wait until flash update is complete, max 220 ms

ReadPacket(Detected_Address, 1, out data);
If (data[0] != 0x00)

Return FAIL; //Failed to program configuration

//6. Executes the software reset
data[0] = CTRL_CMD;
data[1] = SW_RESET;
WritePacket(Detected_Address, 2, data);

//7. Wait time until reloading is complete (e.g. 100 ms)
Delay(100);

return PASS;
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4.6 Step 4 – Verify Flash

This is mandatory for the programmer because no other method ensures that the written data is correct (for example, check-
sum). Because checksum cannot guarantee that all data in flash is identical to the hex content, each flash byte must be 
checked separately.

The verification process starts from reading device configurations from the chip and compares it with the corresponding hex 
data. If there are any differences, the programmer must stop and return fail. The programmer reads the new data not directly 
from flash, but from the same volatile buffers that were used during programming (see Figure 2-2 on page 8). New flash data 
was automatically loaded there at the end of the programming step. This data must be identical to the flash's content, since 
"nobody" tried to change it between the Program and Verify steps.

Figure 4-5.  Algorithm of “Verify Flash” Step

Pseudocode – Step 4. Verify Flash

//-------------------------------------------------------------------------------
// Configuration data must be extracted from hex-file (address 0x0000 0000). 
// The I2C address for verification is extracted from hex-file (address 0x9050 0003)
// 2 HEX APIs are used in this step: HEX_ReadData() and HEX_GetVerifyAddr()

Verify_Address = HEX_GetVerifyAddr();

//1.Read Configuration Data from the Registers
data[0] = DATA_OFFSET;
WritePacket(Verify_Address, 1, data);

ReadPacket(Verify_Address, 128, out data);

//2. Extract 128 bytes from hex-file from offset 0x00000000
byte[] hex_Data = HEX_ReadData(0, 128);

//3. Compare hex vs chip data
for (int i = 0; i < 128; i++)
{

if (hex_Data[i] != data[i]) return FALSE;
}

return PASS;
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4.7 Step 5 – Release Chip

This step, which is the opposite of Step 1 – Acquire Chip, releases the chip from the programmer. The programmer executes 
the final actions, such as power-down or reset, disconnecting from the I2C bus (putting lines into the high-Z state), and so on. 
After this step, the programmer can be disconnected from the chip. For example, on an automated pipeline, the chip in the 
socket is replaced by the next part. Therefore, the programmer can start again from Step 1 – Acquire Chip.

It is recommended to call this step at the end of the programming flow and even after failed steps. Therefore, we can ensure 
that in the end, the device is in the known state.

This step is optional and does not generate any I2C traffic, but guarantees that the programmer and the target are left in the 
known state at the end of programming.

Pseudocode – Step 5. Release Chip. 

//-------------------------------------------------------------------------------
// This step depends on the power source. Whether target powered by Programmer or
// external source.

// 1.Power Off or Reset device
Power (OFF) // if powered by Programmer

// or ToggleReset() if target uses external power supply.
// if XRES pin not implemented by Programmer, just return (do nothing).

return PASS / FAIL; // this method should return result of previous Steps,
                    // which actually executed real “programming”

//-------------------------------------------------------------------------------
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Appendix A.   Intel Hex File Format

The Intel hex file records are a text representation of the hexadecimal-coded binary data. Because only ASCII characters are 
used, the format is portable across most computer platforms. Each line (record) of the Intel hex file consists of six parts as 
shown in the following figure.

Figure A-1.  Hex File Record Structure

1. Start code: One character - an ASCII colon ':'

2. Byte count: Two hex digits (1 byte) – specifies the num-
ber of bytes in the data field. 

3. Address: Four hex digits (2 bytes) – a 16-bit address at 
the beginning of the memory position for the data.

4. Record type: Two hex digits (00 to 05) - defines the type 
of the data field. The record types used in the hex file 
generated by Cypress are as follows:

a. 00 - Data record, which contains the data and 16-bit 
address.

b. 01 - End of file record, which is a file termination 
record and has no data. This must be the last line of 
the file; only one is allowed for every file.

c. 04 - Extended linear address record, which allows 
full 32-bit addressing. The address field is 0000, the 
byte count is 02. The two data bytes represent the 
upper 16 bits of the 32-bit address, when combined 
with the lower 16-bit address of the 00 type record. 

5. Data: A sequence of 'n' bytes of the data, represented by 
2n hex digits.

6. Checksum: Two hex digits (1 byte), which is the least 
significant byte of the two's complement of the sum of 
the values of all fields except fields 1 and 6 (Start code ':' 
byte and two hex digits of the Checksum).

Examples for the different record types used in the hex file 
generated for the CY8CMBR3xxx device are as follows:

Consider that these three records are placed in consecutive 
lines of the hex file (Meta Data and End of Hex File).

 :0200000490501A

 :07000000010137370A009AE5

 :00000001FF 

For the sake of readability, "Record type" is highlighted in 
red and the 32-bit address of the Metadata section is in blue.

The first record (:0200000490501A) is an extended linear 
address record as indicated by the value in the Record Type 
field (04). The address field is 0000 and the byte count is 02. 
This means that there are two data bytes in this record. 
These data bytes (9050) specify the upper 16-bit address of 
the 32-bit address metadata section in the hex file's space. 
In this case, all the data records that follow this record are 
assumed to have their upper 16-bit address as 0x9050 (in 
other words, the base address is 0x90500000). The ‘1A' 
byte is the checksum byte for this record:

0x1A = 0x100 - (0x02+0x00+0x00+0x04+0x90+0x50)

The next record (:07000000010137370A009AE5) is the 
data record, as indicated by the value in the Record Type 
field (00). The byte count is 07, meaning that there are only 
7 data bytes in this record (010137370A009A). The 32-bit 
starting address for these data bytes is at address 
90500000. The upper 16-bit address (9050) is derived from 
the extended linear address record in the first line; the lower 
16-bit address is specified in the address field of this record 
as 0000. The ‘E5' byte is the checksum byte for this record.

The last record (:00000001FF) is the end of file record, as 
indicated by the value in the Record Type field (01). This is 
the last record of the hex file.

Note The data records of the following multi-bytes region in 
the hex file are in big-endian format (MSB byte in the lower 
address): Checksum data at address 0x9030 0000 and 
Meta data at address 0x9050 0000. The data records of the 
rest of the multi-byte regions in the hex file are all in the lit-
tle-endian format (LSB byte in lower address).

Start code

(Colon character)

Byte count

(1 byte)

Address

(2 bytes)

Record type

(1 byte)

Data

(N bytes)

Checksum

(1 byte)



30 Device Programming Specifications, Document No. 001-89944 Rev. *F



Device Programming Specifications, Document No. 001-89944 Rev. *F 31

Appendix B.   I2C Protocol - Packets and Signals

The I2C interface is a packet-based serial transaction protocol and at the pin level, uses one bidirectional data line (SDA) and 
one clock connection (SCL). Generation of clock signal on the I2C bus is always the responsibility of the master devices. Bus 
clock signals from the master can only be altered when they are stretched by a slow slave device holding down the clock line, 
or by another master when arbitration occurs. A complete data transfer on the I2C bus (one packet) consists of five phases:

 Start Condition – this signal initiates packet transfer. It is HIGH to LOW transition on the SDA line while SCL is HIGH. 
The bus is considered to be busy after the START condition. Therefore, no other master will try to access the bus while it 
is busy. The bus is considered to be free again after the STOP condition is generated.

 Address – the 7-bit address is sent by the master to establish connection with the necessary slave device.

 R/W Bit – using this bit, the master informs the slave about the type of transaction - Read or Write.

 Data Block – This is the actual data transferred between the master and slave. It must be at least 1-byte long and the 
number of bytes for each transfer is unrestricted. The granularity of the data is 8 bits and it is transferred from the master 
to slave (Write) or from the slave to master (Read) depending on the R/W bit.

 Stop Condition – this signal ends the packet transfer. It is a LOW to HIGH transition on the SDA line while SCL is HIGH.

The timing diagrams of the I2C transfer are shown in the following figure. This diagram is common for Read and Write trans-
fers.

Figure B-1.  Generic I2C Packets

The I2C packet is transmitted in the following sequence:

1. The START condition moves the bus into the busy state.

2. A seven-bit slave address is sent, which is received by all slaves. After this phase is completed, only the addressed slave 
talks to the master. All other slaves wait for the STOP condition.

3. The R/W bit defines the direction of the transaction: LOW - Write to slave, HIGH - Read from slave. 

4. The ACK bit is sent by the slave device signals. The master that requested the address is present on the bus and is ready 
for communication. When SDA remains HIGH during this ninth bit clock pulse, this is defined as the Not Acknowledge sig-
nal. The master can then generate either a STOP condition to abort the transfer, or a repeated START to start a new 
transfer. When SDA remains stable LOW during the HIGH period of the clock, this is the Acknowledge signal.

5. The Data Slot consists of the necessary number of 9-bit data chunks: 

a. 8-bit: Data Byte for the Write transaction is sent by the master, and for the Read transaction by the slave.

b. 1-bit: The ACK signal for the Write transaction is signaled by the slave (meaning that it is ready for the next byte to 
receive). For the Read transaction, the master signals by the ACK slave that it is ready for the next byte.

6. The STOP condition ends the transaction and frees the bus.
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Note that the ACK slot can be used for clock-stretching – the slave pauses the transaction by holding the SCL line LOW. The 
transaction cannot continue until the line is released in HIGH again. Clock-stretching is optional; most slave devices, including 
the CY8CMBR3xxx, do not implement this feature. 

Figure B-2.  Format of Read/Write I2C Packets

B.1  Data Validity

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can 
only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each data bit transferred.

Figure B-3.  Bit Transfer on I2C Bus

S SLAVE ADDRESS R/W A DATA A DATA A A/A P

S SLAVE ADDRESS R/W A DATA A DATA A P

data transferred
(n bytes + acknowledge)‘0’ (write)

data transferred
(n bytes + acknowledge)(read)

Write:

Read:

from master to slave

from slave to master

A = acknowledge (SDA LOW)

A = not acknowledge (SDA HIGH)

S = START condition

P = STOP condition

SDA

SCL

data line stable;
data valid

change of 
data 

allowed
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